(资料图片)
相信目前很多小伙伴对于面积计算公式 你知道它们是怎么来的吗?都比较感兴趣,那么小搜今天在网上也是收集了一些与面积计算公式 你知道它们是怎么来的吗?相关的信息来分享给大家,希望能够帮助到大家哦。这个正多边形的面积和周长的值比圆的相应值要小一些,但这两对值相当接近。如果我们放置更多的点,则可以使这两对值更加接近。假定我们所使用的点的数目很大,比方说为n。于是,我们就得到一个正 n边形,且其面积和周长与圆的真实面积和周长非常接近。关键的一点是,随着正 n边形边数的增多,正n边形也会越来越近似于圆。那么,此正多边形的面积又是多少呢?让我们将它切分成 n个相同的三角形吧。
这样,每个三角形的底边长度就等于正多边形的边长,令其为 s。而三角形的高度则是从圆心到正多边形边的距离,我们称该高度为 h。因此,每个三角形的面积为1/2hs,而正多边形的面积则为1/2hsn。注意到 sn正好是正多边形的周长,因此我们可以得出如下等式:
其中的 p为正多边形的周长。就这样,使用周长和圆心到边长的距离,我们将正多边形的面积精确地表示了出来。然而,随着边数 n无限地增大,情况又会怎样呢?显然,正多边形的周长 p将会和圆的周长 C越来越接近,而高度 h也将会逼近圆的半径r。这说明正多边形的面积必然会逼近1/2rC,而同时正多边形的面积也一直在逼近圆的真实面积 A。那么,唯一的结论只可能是,这两个数值必然相等,即
这表明,圆的面积刚好等于半径与圆周的乘积的一半。一种思考该结论的好方法是,设想将圆周展开成一条直线,则该直线和圆的半径刚好形成一个直角三角形。
我们所得出的公式表明,圆形所占据的面积刚好和这个直角三角形的面积相等。这里,有一种很重要的方法。仅仅通过做一些近似,我们就不经意地得出了圆的面积的精确表示。关键的一点是,我们并不只是做了几个精确程度很高的近似,而是做了无穷多个近似。我们构造了一个精确程度越来越高的无穷近似序列,这无穷多个近似已经足以让我们看出其中的模式并得到它们的极限。换句话说,我们可以从一个有模式的无穷近似序列中得知真理。因此,将这视为迄今为止人类所产生的最伟大的想法,是有一定道理的。这种奇妙的方法,我们一般称之为穷竭法,它是由古希腊数学家欧多克索斯(Eudoxus,柏拉图的一位学生)于公元前 370年左右发明的。它让我们可以通过构造无穷的直线近似序列来度量弯曲的形状。运用穷竭法构造无穷近似序列的诀窍是,所构造出的无穷序列必须具有某种模式——一个无穷的随机数序列并不能告诉我们什么有价值的信息。因此,只有一个无穷的序列是不够的,我们还必须能够发现其中的模式从而理解该序列。现在,我们已经用圆周将圆的面积表示了出来。
本文到此结束,希望对大家有所帮助。